Trong không gian véc tơ R$^{5}$ xét tích vô hướng thông thường. Tìm một cơ sở của phần bù trực giao \(\mathop {\rm{W}}\nolimits^ \bot \) của không gian: \({\rm{W}} = span\left\{ {\mathop u\nolimits_1 = (1,2,3, – 1,2),\mathop u\nolimits_1 = (2,4,7,2, – 1)} \right\}\)

Trong không gian véc tơ R$^{5}$ xét tích vô hướng thông thường. Tìm một cơ sở của phần bù trực giao \(\mathop {\rm{W}}\nolimits^ \bot \) của không gian: \({\rm{W}} = span\left\{ {\mathop u\nolimits_1 = (1,2,3, – 1,2),\mathop u\nolimits_1 = (2,4,7,2, – 1)} \right\}\)

A. \(\left\{ {\mathop v\nolimits_1 = (2, – 1,0,0,0),\mathop v\nolimits_2 = ( – 17,0,5,0,1),\mathop v\nolimits_3 = (13,0, – 4,1,0)} \right\}\)

B. \(\left\{ {\mathop v\nolimits_1 = (2, – 1,0,0,0),\mathop v\nolimits_2 = ( – 17,0,5,0,1)} \right\}\)

C. \(\left\{ {\mathop v\nolimits_1 = (2, – 1,0,0,0),\mathop v\nolimits_2 = (7,0,5,0,1),\mathop v\nolimits_2 = (13,0, – 4,1,0)} \right\}\)

D. \(\left\{ {\mathop v\nolimits_1 = (2, – 1,0,0,0),\mathop v\nolimits_2 = ( – 17,0,5,0,1),\mathop v\nolimits_2 = (15,1, – 5,0, – 1)} \right\}\)

Hướng dẫn

Chọn A là đáp án đúng