Công thức khoảng cách từ điểm đến mặt phẳng

posted in: Ôn thi đại học, Toán 12 | 0

Trong hình học không gian Oxyz, ta có nhiều cách để tính được khoảng cách từ điểm đến mặt phẳng. Tuy nhiên, nếu đề cho biết tọa độ 1 điểm và phương trình 1 mặt phẳng thì ta nên dùng công thức dưới đây sẽ cho kết quả nhanh và chính xác.

khoảng cách từ 1 điểm tới 1 mặt phẳng

Cơ sở lý thuyết

Trong không gian Oxyz có điểm P(a; b; c) không thuộc mặt phẳng (α), biết rằng mặt phẳng này có phương trình (α): Ax + By + Cz + D = 0. Để tính khoảng cách từ điểm P(a; b; c) tới mặt phẳng (α) ta sử dụng công thức:

d(P, (α)) = $\frac{{\left| {a.A + b.B + c.C + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}$

Bài tập có lời giải

Bài tập 1.Trong không gian có mặt phẳng (α): x – 2y + 3z – 4 = 0. Hãy tìm khoảng cách từ P(1; 1; 1) tới mặt phẳng (α)?

Hướng dẫn giải

Áp dụng công thức tính khoảng cách ở trên: d(P, (α)) = $\frac{{\left| {1.1 + 1.\left( { – 2} \right) + 1.\left( 3 \right) – 4} \right|}}{{\sqrt {{1^2} + {{\left( { – 2} \right)}^2} + {3^2}} }} = \frac{{\sqrt {14} }}{7}$

Kết luận: d(P, (α)) = $\frac{{\sqrt {14} }}{7}$

Bài tập 2. Cho mặt phẳng (α): x + y + z – 9 = 0. Một điểm P nằm trên trục tọa độ Oz thuộc hệ trục Oxyz, cách (α) là 5. Hãy tìm tọa độ của M?

Hướng dẫn giải

Vì P thuộc Oz nên nó có tọa độ là P( 0; 0; z).

Theo công thức khoảng cách ở trên: d(P, (α)) = 5

$5 = \frac{{\left| {1.0 + 1.0 + 1.z – 9} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} \Leftrightarrow z = 5\sqrt 3 + 9$

Kế luận: P( 0; 0; $5\sqrt 3 + 9$)

Bài tập 3. Hãy tính khoảng cách từ gốc tọa độ O của hệ trục Oxyz tới mặt phẳng (Q): 2x – 3y – 5z + 2 = 0

Hướng dẫn giải

Gốc tọa độ của hệ trục Oxyz có tọa độ O(0; 0; 0)

Áp dụng công thức tính khoảng cách ở trên: d(O, (Q)) = $\frac{{\left| {2.0 + \left( { – 3} \right).0 + \left( { – 5} \right).0 + 2} \right|}}{{\sqrt {{2^2} + {{\left( { – 3} \right)}^2} + {{\left( { – 5} \right)}^2}} }} = \frac{{\sqrt {38} }}{{19}}$

Bài tập 4. Một mặt phẳng (α): – x + 2y + 3z – 4 = 0. Biết khoảng cách từ mp (α) tới P thuộc trục Ox là 2. Hãy xác định tọa độ điểm P.

Hướng dẫn giải

Vì P thuộc Ox nên nó có tọa độ P(x; 0; 0)

Theo đề bài: d(P, (α)) = 2

Áp dụng công thức tính khoảng cách: 2 = $\frac{{\left| {\left( { – 1} \right).x + 2.0 + 3.0 – 4} \right|}}{{\sqrt {{{\left( { – 1} \right)}^2} + {2^2} + {3^2}} }} \Leftrightarrow x = 2\sqrt {14} – 4$

Vậy P( $2\sqrt {14} – 4$; 0; 0)

Bài viết khoảng cách từ 1 điểm đến mặt phẳng tạm dừng ở đây. Với mong muốn mỗi bài viết sẽ giúp bạn hiểu và vận dụng thành thạo công thức nên nếu còn thắc mắc hay góp ý hãy để lại và Toanhoc.org sẽ giúp bạn giải quyết.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *